3.1391 \(\int \frac{x^8}{\sqrt{2+x^6}} \, dx\)

Optimal. Leaf size=31 \[ \frac{1}{6} x^3 \sqrt{x^6+2}-\frac{1}{3} \sinh ^{-1}\left (\frac{x^3}{\sqrt{2}}\right ) \]

[Out]

(x^3*Sqrt[2 + x^6])/6 - ArcSinh[x^3/Sqrt[2]]/3

________________________________________________________________________________________

Rubi [A]  time = 0.0116619, antiderivative size = 31, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {275, 321, 215} \[ \frac{1}{6} x^3 \sqrt{x^6+2}-\frac{1}{3} \sinh ^{-1}\left (\frac{x^3}{\sqrt{2}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^8/Sqrt[2 + x^6],x]

[Out]

(x^3*Sqrt[2 + x^6])/6 - ArcSinh[x^3/Sqrt[2]]/3

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{x^8}{\sqrt{2+x^6}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{2+x^2}} \, dx,x,x^3\right )\\ &=\frac{1}{6} x^3 \sqrt{2+x^6}-\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{\sqrt{2+x^2}} \, dx,x,x^3\right )\\ &=\frac{1}{6} x^3 \sqrt{2+x^6}-\frac{1}{3} \sinh ^{-1}\left (\frac{x^3}{\sqrt{2}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0049871, size = 31, normalized size = 1. \[ \frac{1}{6} x^3 \sqrt{x^6+2}-\frac{1}{3} \sinh ^{-1}\left (\frac{x^3}{\sqrt{2}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/Sqrt[2 + x^6],x]

[Out]

(x^3*Sqrt[2 + x^6])/6 - ArcSinh[x^3/Sqrt[2]]/3

________________________________________________________________________________________

Maple [A]  time = 0.024, size = 25, normalized size = 0.8 \begin{align*} -{\frac{1}{3}{\it Arcsinh} \left ({\frac{{x}^{3}\sqrt{2}}{2}} \right ) }+{\frac{{x}^{3}}{6}\sqrt{{x}^{6}+2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(x^6+2)^(1/2),x)

[Out]

-1/3*arcsinh(1/2*x^3*2^(1/2))+1/6*x^3*(x^6+2)^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.01733, size = 78, normalized size = 2.52 \begin{align*} \frac{\sqrt{x^{6} + 2}}{3 \, x^{3}{\left (\frac{x^{6} + 2}{x^{6}} - 1\right )}} - \frac{1}{6} \, \log \left (\frac{\sqrt{x^{6} + 2}}{x^{3}} + 1\right ) + \frac{1}{6} \, \log \left (\frac{\sqrt{x^{6} + 2}}{x^{3}} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^6+2)^(1/2),x, algorithm="maxima")

[Out]

1/3*sqrt(x^6 + 2)/(x^3*((x^6 + 2)/x^6 - 1)) - 1/6*log(sqrt(x^6 + 2)/x^3 + 1) + 1/6*log(sqrt(x^6 + 2)/x^3 - 1)

________________________________________________________________________________________

Fricas [A]  time = 1.47324, size = 74, normalized size = 2.39 \begin{align*} \frac{1}{6} \, \sqrt{x^{6} + 2} x^{3} + \frac{1}{3} \, \log \left (-x^{3} + \sqrt{x^{6} + 2}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^6+2)^(1/2),x, algorithm="fricas")

[Out]

1/6*sqrt(x^6 + 2)*x^3 + 1/3*log(-x^3 + sqrt(x^6 + 2))

________________________________________________________________________________________

Sympy [A]  time = 1.89741, size = 39, normalized size = 1.26 \begin{align*} \frac{x^{9}}{6 \sqrt{x^{6} + 2}} + \frac{x^{3}}{3 \sqrt{x^{6} + 2}} - \frac{\operatorname{asinh}{\left (\frac{\sqrt{2} x^{3}}{2} \right )}}{3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(x**6+2)**(1/2),x)

[Out]

x**9/(6*sqrt(x**6 + 2)) + x**3/(3*sqrt(x**6 + 2)) - asinh(sqrt(2)*x**3/2)/3

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{8}}{\sqrt{x^{6} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^6+2)^(1/2),x, algorithm="giac")

[Out]

integrate(x^8/sqrt(x^6 + 2), x)